Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data

Segnon Mawuli, Lau Chi-Keung, Wilfling Bernd, Gupta Rangan

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We analyze Australian electricity price returns and find that they exhibit volatility clustering, long memory, structural breaks, and multifractality. Consequently, we let the return mean equation follow two alternative specifications, namely (i) a smooth transition autoregressive fractionally integrated moving average (STARFIMA) process, and (ii) a Markov-switching autoregressive fractionally integrated moving average (MSARFIMA) process. We specify volatility dynamics via a set of (i) short- and long-memory GARCH-type processes, (ii) Markov-switching (MS) GARCH-type processes, and (iii) a Markov-switching multifractal (MSM) process. Based on equal and superior predictive ability tests (using MSE and MAE loss functions), we compare the out-of-sample relative forecasting performance of the models. We find that the (multifractal) MSM volatility model keeps up with the conventional GARCH- and MSGARCH-type specifications. In particular, the MSM model outperforms the alternative specifications, when using the daily squared return as a proxy for latent volatility.

Details zur Publikation

FachzeitschriftStudies in Nonlinear Dynamics and Econometrics
Jahrgang / Bandnr. / Volume26
Ausgabe / Heftnr. / Issue1
Seitenbereich73-98
StatusVeröffentlicht
Veröffentlichungsjahr2022 (01.04.2022)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1515/snde-2019-0009
StichwörterElectricity price volatility; Multifractal modeling; GARCH-type processes; Markov-switching processes; volatility forecasting

Autor*innen der Universität Münster

Segnon, Mawuli Kouami
Lehrstuhl für Volkswirtschaftslehre, insbesondere empirische Wirtschaftsforschung
Wilfling, Bernd
Professur für Volkswirtschaftslehre, empirische Wirtschaftsforschung (Prof. Wilfling)