Identification of DSGE models—The effect of higher-order approximation and pruning

Mutschler W

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

This paper shows how to check rank criteria for a local identification of nonlinear DSGE models, given higher-order approximations and pruning. This approach imposes additional restrictions on (higher-order) moments and polyspectra, which can be used to identify parameters that are unidentified in a first-order approximation. The identification procedures are demonstrated by means of the Kim (2003) and the An and Schorfheide (2007) models. Both models are identifiable with a second-order approximation. Furthermore, analytical derivatives of unconditional moments, cumulants and corresponding polyspectra up to fourth order are derived for the pruned state-space.

Details zur Publikation

FachzeitschriftJournal of Economic Dynamics and Control
Jahrgang / Bandnr. / Volume56
Seitenbereich34-54
StatusVeröffentlicht
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.jedc.2015.04.007
Link zum Volltexthttp://www.sciencedirect.com/science/article/pii/S0165188915000731
StichwörterIdentification; Pruning; Higher-order moments; Cumulants; Polyspectra; Analytical derivatives

Autor*innen der Universität Münster

Mutschler, Willi
Institut für Ökonometrie und Wirtschaftsstatistik