Localized model reduction for parameterized problems

Buhr Andreas, Iapichino Laura, Ohlberger Mario, Rave Stephan, Schindler Felix, Smetana Kathrin

Forschungsartikel (Buchbeitrag) | Peer reviewed

Zusammenfassung

In this contribution we present a survey of concepts in localized model order reduction methods for parameterized partial differential equations. The key concept of localized model order reduction is to construct local reduced spaces that have only support on part of the domain and compute a global approximation by a suitable coupling of the local spaces. In detail, we show how optimal local approximation spaces can be constructed and approximated by random sampling. An overview of possible conforming and nonconforming couplings of the local spaces is provided and corresponding localized a posteriori error estimates are derived. We introduce concepts of local basis enrichment, which includes a discussion of adaptivity. Implementational aspects of localized model reduction methods are addressed. Finally, we illustrate the presented concepts for multiscale, linear elasticity, and fluid-flow problems, providing several numerical experiments.

Details zur Publikation

Herausgeber*innenBenner P, Grivet-Talocia S, Quarteroni A, Rozza G, Schilders W, Sileira L
BuchtitelModel Order Reduction: Volume 2 Snapshot-Based Methods and Algorithms
Seitenbereich245-306
StatusVeröffentlicht
Veröffentlichungsjahr2021
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1515/9783110671490-006
Link zum Volltexthttps://doi.org/10.1515/9783110671490-006
Stichwörterlocalized model reduction; reduced basis method; randomized training; a; posteriori error estimation; basis enrichment; online adaptivity; parameterized systems; multiscale problems

Autor*innen der Universität Münster

Buhr, Andreas
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Rave, Stephan
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Schindler, Felix Tobias
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)