A Laplacian to compute intersection numbers on M_{g,n} and correlation functions in NCQFT

Grosse, Harald; Hock, Alexander; Wulkenhaar, Raimar

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Let Fg(t) be the generating function of intersection numbers of ψ-classes on the moduli spaces Mg,n of stable complex curves of genus g. As by-product of a complete solution of all non-planar correlation functions of the renormalised Φ3-matrical QFT model, we explicitly construct a Laplacian ∆t on a space of formal parameters ti which satisfies exp(∑g≥2 N2−2g Fg(t)) =exp((−∆t + F2(t))/N2)1 as formal power series in 1/N2. The result is achieved via Dyson-Schwinger equations from noncommutative quantum field theory combined with residue techniques from topological recursion. The genus-g correlation functions of the Φ3-matricial QFT model are obtained by repeated application of another differential operator to Fg (t) and taking for ti the renormalised moments of a measure constructed from the covariance of the model.

Details zur Publikation

FachzeitschriftCommunications in Mathematical Physics (Commun. Math. Phys.)
Jahrgang / Bandnr. / Volume399
Seitenbereich481-517
StatusVeröffentlicht
Veröffentlichungsjahr2023 (05.01.2023)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/s00220-022-04557-w
StichwörterIntersection numbers; Matrix models; Topological recursion; Dyson-Schwinger equations; Noncommutative geometry; Quantum field theory

Autor*innen der Universität Münster

Hock, Alexander
Professur für Reine Mathematik (Prof. Wulkenhaar)
Wulkenhaar, Raimar
Professur für Reine Mathematik (Prof. Wulkenhaar)