The effect of observables, functional specifications, model features and shocks on identification in linearized DSGE models

Ivashchenko Sergey, Mutschler Willi

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

The decisions a researcher makes at the model building stage are crucial for parameter identification. This paper contains a number of applied tips for solving identifiability problems and improving the strength of DSGE model parameter identification by fine-tuning the (1) choice of observables, (2) functional specifications, (3) model features and (4) choice of structural shocks. We offer a formal approach based on well-established diagnostics and indicators to uncover and address both theoretical (yes/no) identifiability issues and weak identification from a Bayesian perspective. The concepts are illustrated by two exemplary models that demonstrate the identification properties of different investment adjustment cost specifications and output-gap definitions.

Details zur Publikation

FachzeitschriftEconomic Modelling
Jahrgang / Bandnr. / Volume2019
Statusonline first
Veröffentlichungsjahr2019 (01.10.2019)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.econmod.2019.09.039
StichwörterDSGE models; Local identification; Weak identification; Investment adjustment costs; Output-gap; Observables

Autor*innen der Universität Münster

Mutschler, Willi
Professur für VWL, Ökonometrie/Wirtschaftsstatistik (Prof. Trede)