An algebraic approach to a quartic analogue of the Kontsevich model

Schürmann, Jörg; Wulkenhaar, Raimar

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We consider an analogue of Kontsevich’s matrix Airy functionwhere the cubic potential Tr(φ3) is replaced by a quartic term Tr(φ4). Cumulants of the resulting measure are known to decompose into cycle types forwhich a recursive system of equations can be established. We develop a new, purely algebraic geometrical solution strategy for the two initial equations ofthe recursion, based on properties of Cauchy matrices. These structures led in subsequent work to the discovery that the quartic analogue of the Kontsevichmodel obeys blobbed topological recursion.

Details zur Publikation

FachzeitschriftMathematical Proceedings (Math. Proc. Cambridge Philos. Soc.)
Jahrgang / Bandnr. / Volume174
Ausgabe / Heftnr. / Issue3
Seitenbereich471-495
StatusVeröffentlicht
Veröffentlichungsjahr2023 (20.09.2022)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1017/S0305004122000366
StichwörterEquations for complex functions; Relationship with integrable systems; Toeplitz, Cauchy and related matrices; Zeros of polynomials, rational functions and other analytic functions

Autor*innen der Universität Münster

Schürmann, Jörg
Mathematisches Institut
Wulkenhaar, Raimar
Professur für Reine Mathematik (Prof. Wulkenhaar)