The definability of E in self-iterable mice [Die Definierbarkeit von E in selbstiterierbaren Mäusen]

Schlutzenberg, Farmer

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Let M be a fine structural mouse and let F ∈ M be such that M ⊨``F is a total extender'' and (M || lh(F), F) is a premouse. We show that it follows that F ∈ E^M, where E^M is the extender sequence of M. We also prove generalizations of this fact. Let M be a premouse with no largest cardinal and let σ be a sufficient iteration strategy for M. We prove that if M knows enough of σ↾M then E^M is definable over the universe ⌊M⌋ of M, so if also ⌊M⌋ ⊨ ZFC then ⌊M⌋ ⊨``V=HOD''. We show that this result applies in particular to M = M_nt | λ, where M_nt is the least non-tame mouse and λ is any limit cardinal of M_nt. We also show that there is no iterable bicephalus (N,E,F) for which E is type 2 and F is type 1 or 3. As a corollary, we deduce a uniqueness property for maximal L[E] constructions computed in iterable background universes.

Details zur Publikation

FachzeitschriftAnnals of Pure and Applied Logic (Ann. Pure Appl. Logic)
Jahrgang / Bandnr. / Volume174
Ausgabe / Heftnr. / Issue2
StatusVeröffentlicht
Veröffentlichungsjahr2023 (01.02.2023)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.apal.2022.103208
Link zum Volltexthttps://doi.org/10.1016/j.apal.2022.103208
StichwörterSet theory; inner model theory; large cardinal; fine structure; extender; self-iterability

Autor*innen der Universität Münster

Schlutzenberg, Farmer
Juniorprofessur für Mathematische Logik (Prof. Schlutzenberg)