A premouse inheriting strong cardinals from V

Schlutzenberg Farmer

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We identify a premouse inner model L[E], such that for any coarsely iterable background universe R modelling ZFC, L[E]^R is a proper class premouse of R inheriting all strong and Woodin cardinals from R, and iteration trees on L[E]^R lift to coarse iteration trees on R. We also prove that a slight weakening of (k+1)-condensation follows from (k,ω_1+1)-iterability in place of (k,ω_1,ω_1+1)-iterability. We also prove that full (k+1)-condensation follows from (k,ω_1+1)-iterability and (k+1)-solidity. We also prove general facts regarding generalizations of bicephali; these facts are needed in the proofs of the results above.

Details zur Publikation

FachzeitschriftAnnals of Pure and Applied Logic (Ann. Pure Appl. Logic)
Jahrgang / Bandnr. / Volume171
Ausgabe / Heftnr. / Issue9
StatusVeröffentlicht
Veröffentlichungsjahr2020 (01.10.2020)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.apal.2020.102826
Link zum Volltexthttps://doi.org/10.1016/j.apal.2020.102826
StichwörterSet theory; inner model theory; large cardinal; fine structure; strong cardinal; background construction

Autor*innen der Universität Münster

Schlutzenberg, Farmer
Juniorprofessur für Mathematische Logik (Prof. Schlutzenberg)