Parallelization Strategies for GPU- Based Ant Colony Optimization Applied to TSP

Menezes Breno, de Araujo Pessoa L F, Kuchen H, Buarque de Lima Neto F

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Graphics Processing Units (GPUs) have been widely used to speed up the execu-tion of various meta-heuristics for solving hard optimization problems. In the caseof Ant Colony Optimization (ACO), many implementations with very distinct par-allelization strategies and speedups have been already proposed and evaluated onthe Traveling Salesman Problem (TSP). On the one hand, a coarse-grained strategyapplies the parallelization on the ant-level and is the most intuitive and commonstrategy found in the literature. On the other hand, a fine-grained strategy also par-allelizes the internal work of each ant, creating a higher degree of parallelization.Although many parallel implementations of ACO exist, the influence of the algo-rithm parameters (e.g., the number of ants) and the problem configurations (e.g.,the number of nodes in the graph) on the performance of coarse- and fine-grainedparallelization strategies has not been investigated so far. Thus, this work performsa series of experiments and provides speedup analyses of two distinct ACO par-allelization strategies compared to a sequential implementation for different TSPconfigurations and colony sizes. The results show that the considered factors cansignificantly impact the performance of parallelization strategies, particularly forlarger problems. Furthermore, we provide a recommendation for the parallelizationstrategy and colony size to use for a given problem size and some insights for thedevelopment of other GPU-based meta-heuristics.

Details zur Publikation

Herausgeber*innenIan Foster, Gerhard R. Joubert, Luděk Kučera, Wolfgang E. Nagel, Frans Peters
BuchtitelParallel Computing: Technology Trends
Seitenbereich321-330
VerlagIOP Publishing
StatusVeröffentlicht
Veröffentlichungsjahr2020
Sprache, in der die Publikation verfasst istEnglisch
KonferenzPARCO2019, Prag, Tschechische Republik, undefined
ISBN978-1-64368-070-5
DOI10.3233/APC200057
StichwörterParallel Ant Colony Optimization; Graphic Processing Units; Parallelization; Strategies

Autor*innen der Universität Münster

Buarque, Fernando
Lehrstuhl für Wirtschaftsinformatik und Logistik (Prof. Hellingrath) (Logistik)
de Araujo Pessoa, Luis Felipe
Lehrstuhl für Wirtschaftsinformatik und Logistik (Prof. Hellingrath) (Logistik)
Kuchen, Herbert
Lehrstuhl für Praktische Informatik in der Wirtschaft (Prof. Kuchen) (PI)
Menezes, Breno
Lehrstuhl für Praktische Informatik in der Wirtschaft (Prof. Kuchen) (PI)