Exploiting the Natural Diversity of RhlA Acyltransferases for the Synthesis of the Rhamnolipid Precursor 3-(3-Hydroxyalkanoyloxy)Alkanoic Acid

Germer A, Tiso T, Müller C, Behrens B, Vosse C, Scholz K, Froning M, Hayen H, Blank LM

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

ABSTRACT While rhamnolipids of the Pseudomonas aeruginosa type are commercially available, the natural diversity of rhamnolipids and their origin have barely been investigated. Here, we collected known and identified new rhlA genes encoding the acyltransferase responsible for the synthesis of the lipophilic rhamnolipid precursor 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA). Generally, all homologs were found in Betaproteobacteria and Gammaproteobacteria. A likely horizontal gene transfer event into Actinobacteria is the only identified exception. The phylogeny of the RhlA homologs from Pseudomonas and Burkholderia species is consistent with the organism phylogeny, and genes involved in rhamnolipid synthesis are located in operons. In contrast, RhlA homologs from the Enterobacterales do not follow the organisms’ phylogeny but form their own branch. Furthermore, in many Enterobacterales and Halomonas from the Oceanospirillales, an isolated rhlA homolog can be found in the genome. The RhlAs from Pseudomonas aeruginosa PA01, Pseudomonas fluorescens LMG 05825, Pantoea ananatis LMG 20103, Burkholderia plantarii PG1, Burkholderia ambifaria LMG 19182, Halomonas sp. strain R57-5, Dickeya dadantii Ech586, and Serratia plymuthica PRI-2C were expressed in Escherichia coli and tested for HAA production. Indeed, except for the Serratia RhlA, HAAs were produced with the engineered strains. A detailed analysis of the produced HAA congeners by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) highlights the congener specificity of the RhlA proteins. The congener length varies from 4 to 18 carbon atoms, with the main congeners consisting of different combinations of saturated or monounsaturated C10, C12, and C14 fatty acids. The results are discussed in the context of the phylogeny of this unusual enzymatic activity.I MPORTANCE The RhlA specificity explains the observed differences in 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA) congeners. Whole-cell catalysts can now be designed for the synthesis of different congener mixtures of HAAs and rhamnolipids, thereby contributing to the envisaged synthesis of designer HAAs.

Details zur Publikation

FachzeitschriftApplied and Environmental Microbiology (Appl. Environ. Microbiol.)
Jahrgang / Bandnr. / Volume86
Ausgabe / Heftnr. / Issue6
Seitenbereiche02317-19null
StatusVeröffentlicht
Veröffentlichungsjahr2020 (02.03.2020)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1128/AEM.02317-19
Link zum Volltexthttp://aem.asm.org/content/86/6/e02317-19.abstract
StichwörterRhlA; HAA; rhamnolipids; glycolipids; chain length; 3-(3-hydroxyalkanoyloxy)alkanoic acid

Autor*innen der Universität Münster

Hayen, Heiko
Professur für Analytische Chemie (Prof. Hayen)