Multiplier Hopf algebroids: Basic theory and examples

Timmermann T., Van Daele A.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Multiplier Hopf algebroids are algebraic versions of quantum groupoids that generalize Hopf algebroids to the non-unital case and weak (multiplier) Hopf algebras to non-separable base algebras. The main structure maps of a multiplier Hopf algebroid are a left and a right comultiplication. We show that bijectivity of two associated canonical maps is equivalent to the existence of an antipode, discusses invertibility of the antipode, and presents some examples and special cases.

Details zur Publikation

FachzeitschriftCommunications in Algebra
Jahrgang / Bandnr. / Volume0
Statusonline first
Veröffentlichungsjahr2017
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1080/00927872.2017.1363220
Link zum Volltexthttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85029535952&origin=inward
StichwörterBialgebroid; Hopf algebroid; quantum groupoid; weak Hopf algebra

Autor*innen der Universität Münster

Timmermann, Thomas
Mathematisches Institut