Skeleton-Based Scagnostics

Matute J., Telea A., Linsen L.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Scatterplot matrices (SPLOMs) are widely used for exploring multidimensional data. Scatterplot diagnostics (scagnostics) approaches measure characteristics of scatterplots to automatically find potentially interesting plots, thereby making SPLOMs more scalable with the dimension count. While statistical measures such as regression lines can capture orientation, and graph-theoretic scagnostics measures can capture shape, there is no scatterplot characterization measure that uses both descriptors. Based on well-known results in shape analysis, we propose a scagnostics approach that captures both scatterplot shape and orientation using skeletons (or medial axes). Our representation can handle complex spatial distributions, helps discovery of principal trends in a multiscale way, scales visually well with the number of samples, is robust to noise, and is automatic and fast to compute. We define skeleton-based similarity metrics for the visual exploration and analysis of SPLOMs. We perform a user study to measure the human perception of scatterplot similarity and compare the outcome to our results as well as to graph-based scagnostics and other visual quality metrics. Our skeleton-based metrics outperform previously defined measures both in terms of closeness to perceptually-based similarity and computation time efficiency.

Details zur Publikation

FachzeitschriftIEEE Transactions on Visualization and Computer Graphics (TVCG)
Jahrgang / Bandnr. / Volume24
Ausgabe / Heftnr. / Issue1
Seitenbereich542-552
StatusVeröffentlicht
Veröffentlichungsjahr2018
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1109/TVCG.2017.2744339
Link zum Volltexthttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028710866&origin=inward
StichwörterHigh-Dimensional Data; Multidimensional Data (primary keyword)

Autor*innen der Universität Münster

Linsen, Lars
Professur für Praktische Informatik (Prof. Linsen)
Matute Flores, Jose Alejandro
Professur für Praktische Informatik (Prof. Linsen)