Nonlocal Inpainting of Manifold-Valued Data on Finite Weighted Graphs

Bergmann Ronny, Tenbrinck Daniel

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Recently, there has been a strong ambition to translate models and algorithms from traditional image processing to non-Euclidean domains, e.g., to manifold-valued data. While the task of denoising has been extensively studied in the last years, there was rarely an attempt to perform image inpainting on manifold-valued data. In this paper we present a nonlocal inpainting method for manifold-valued data given on a finite weighted graph. We introduce a new graph infinity-Laplace operator based on the idea of discrete minimizing Lipschitz extensions, which we use to formulate the inpainting problem as PDE on the graph. Furthermore, we derive an explicit numerical solving scheme, which we evaluate on two classes of synthetic manifold-valued images.

Details zur Publikation

Seitenbereich604-612
Titel der ReiheLecture Notes in Computer Science
Nr. in Reihe10589
StatusVeröffentlicht
Veröffentlichungsjahr2017 (24.10.2017)
Sprache, in der die Publikation verfasst istEnglisch
KonferenzInternational Conference on Geometric Science of Information, Paris, undefined
Link zum Volltexthttps://arxiv.org/abs/1704.06424

Autor*innen der Universität Münster

Tenbrinck, Daniel
Institut für Informatik