Real self-similar processes started from the origin

Dereich S., Döring L., Kyprianou A.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Since the seminal work of Lamperti, there is a lot of interest in the understanding of the general structure of self-similar Markov processes. Lamperti gave a representation of positive self-similar Markov processes with initial condition strictly larger than 0 which subsequently was extended to zero initial condition. For real self-similar Markov processes (rssMps), there is a generalization of Lamperti's representation giving a one-to-one correspondence between Markov additive processes and rssMps with initial condition different from the origin. We develop fluctuation theory for Markov additive processes and use Kuznetsov measures to construct the law of transient real self-similar Markov processes issued from the origin. The construction gives a pathwise representation through two-sided Markov additive processes extending the Lamperti- Kiu representation to the origin.

Details zur Publikation

FachzeitschriftAnnals of Probability (Ann. Probab.)
Jahrgang / Bandnr. / Volume45
Ausgabe / Heftnr. / Issue3
Seitenbereich1952-2003
StatusVeröffentlicht
Veröffentlichungsjahr2017
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1214/16-AOP1105
Link zum Volltexthttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019177216&origin=inward
StichwörterFluctuation theory; Markov additive process; Self-similar process

Autor*innen der Universität Münster

Dereich, Steffen
Professur für Wahrscheinlichkeitstheorie (Prof. Dereich)