Didodecyldimethylammonium bromide (DMAB) stabilized poly(lactic-co-glycolic acid) (PLGA) nanoparticles: Uptake and cytotoxic potential in Caco-2 cells

Gossmann R., Spek S., Langer K., Mulac D.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Surface cationization of nanoparticulate drug delivery systems represents one important strategy in the field of novel drug development to enable enhanced cellular uptake in vitro and consequently an improved bioavailability in vivo. The aim of this study is the characterization of a new cationic nanoparticle system, which provides an improved cellular uptake in epithelial cells of the gastrointestinal tract as well as low cytotoxicity. We have successfully prepared fluorescent-labeled didodecyldimethylammonium bromide (DMAB)-stabilized poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles, which were additionally modified using two hydrophilic polymers: polyvinyl alcohol (PVA) and polyethylene glycol (PEG). The nanoparticles were examined with regard to stability of fluorescence labeling, DMAB content, cellular uptake, and cytotoxicity. Consequently, we could show, that the surface modifications lead to a decreased cytotoxic activity in contrast to unmodified nanoparticles against human epithelial colorectal adenocarcinoma cells (Caco-2) as well as a promising increase in cellular uptake in comparison to negatively charged PLGA nanoparticles combining the advantages of a superior uptake of a positively charged nanoparticle system with the biological safety of negatively charged systems.

Details zur Publikation

FachzeitschriftJournal of Drug Delivery Science and Technology
Jahrgang / Bandnr. / Volume43
Ausgabe / Heftnr. / Issuenull
Seitenbereich430-438
StatusVeröffentlicht
Veröffentlichungsjahr2018
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.jddst.2017.11.002
Link zum Volltexthttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85034649107&origin=inward
StichwörterApoptosis; Caco-2; Cationic nanoparticles; Cellular uptake; Cytotoxicity; Necrosis

Autor*innen der Universität Münster

Gossmann, Rebecca
Professur für Pharmazeutische Technologie und Biopharmazie (Prof. Langer)
Langer, Klaus
Professur für Pharmazeutische Technologie und Biopharmazie (Prof. Langer)
Mulac, Dennis
Professur für Pharmazeutische Technologie und Biopharmazie (Prof. Langer)
Spek, Silvia
Professur für Pharmazeutische Technologie und Biopharmazie (Prof. Langer)