STEMcl–A multi-GPU multislice algorithm for simulation of large structure and imaging parameter series

Radek Manuel, Tenberge Jan-Gerd, Hilke Sven, Wilde Gerhard, Peterlechner Martin

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Electron microscopy images are interference patterns and can generally not be interpreted in a straight forward manner. Typically, time consuming numerical simulations have to be employed to separate spec- imen features from imaging artifacts. Directly comparing numerical predictions to experimental results, realistic simulation box sizes and varying imaging parameters are needed. In this work, we introduce an accelerated multislice algorithm, named STEMcl , that is capable of simulating series of large super cells typical for defective and amorphous systems, in addition to parameter series using the massive par- allelization accessible in today's commercial PC-hardware, e.g. graphics processing units (GPUs). A new numerical approach is used to overcome the memory constraint limiting the maximum computable sys- tem size. This approach creates the possibility to study systematically the contrast formation arising by structural differences. STEM simulations of structure series of a crystalline Si and an amorphous CuZr system are presented and the contrast formation of vacancies/voids are studied. The detectability of va- cancies/voids in STEM experiments is discussed in terms of density changes.

Details zur Publikation

FachzeitschriftUltramicroscopy
Jahrgang / Bandnr. / Volume188
Seitenbereich24-30
StatusVeröffentlicht
Veröffentlichungsjahr2018 (16.02.2018)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.ultramic.2018.02.004
StichwörterSTEM; image simulation; multislice; Si; CuZr

Autor*innen der Universität Münster

Hilke, Sven
Institut für Materialphysik
Peterlechner, Martin
Professur für Materialphysik (Prof. Wilde)
Radek, Manuel
Institut für Materialphysik
Tenberge, Jan-Gerd
Klinik für Neurologie mit Institut für Translationale Neurologie
Wilde, Gerhard
Professur für Materialphysik (Prof. Wilde)