A Generic Framework for Collaborative Filtering Based on Social Collective Recommendation

Homann Leschek, Maleszka Bernadetta, Martins Denis, Vossen Gottfried

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Collaborative filtering has been considered the most used approach for recommender systems in both practice and research. Unfortunately, traditional collaborative filtering suffers from the so-called cold-start problem, which is the challenge to recommend items for an unknown user. In this paper, we introduce a generic framework for social collective recommendations targeting to support and complement traditional recommender systems to achieve better results. Our framework is composed of three modules, namely, a User Clustering module, a Representative module, and an Adaption module. The User Clustering module aims to find groups of users, the Representative module is responsible for determining a representative of each group, and the Adaption module handles new users and assigns them appropriately. By the composition of the framework, the cold-start problem is alleviated.

Details zur Publikation

Herausgeber*innenNgoc Thanh Nguyen, Elias Pimenidis, Zaheer Khan, Bogdan Trawiński
BuchtitelComputational Collective Intelligence (Band 11055)
Seitenbereich238-247
VerlagSpringer International Publishing
ErscheinungsortHeidelberg
Titel der ReiheLecture Notes in Computer Science (ISSN: 0302-9743)
Nr. in Reihe11055
StatusVeröffentlicht
Veröffentlichungsjahr2018
Sprache, in der die Publikation verfasst istEnglisch
KonferenzInternational Conference on Computational Collective Intelligence (ICCCI 2018), Bristol, Vereinigtes Königreich
ISBN978-3-319-98442-1
Stichwörterrecommendation; collaborative filtering

Autor*innen der Universität Münster

Homann, Leschek
Lehrstuhl für Wirtschaftsinformatik (Prof. Vossen) (DBIS)
Lima Martins, Denis Mayr
Lehrstuhl für Wirtschaftsinformatik (Prof. Vossen) (DBIS)
Vossen, Gottfried
Lehrstuhl für Wirtschaftsinformatik (Prof. Vossen) (DBIS)