Capacity of an associative memory model on random graph architectures

Löwe M., Vermet F.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We analyze the storage capacity of the Hopfield models on classes of random graphs. While such a setup has been analyzed for the case that the underlying random graph model is an Erdös-Renyi graph, other architectures, including those investigated in the recent neuroscience literature, have not been studied yet. We develop a notion of storage capacity that highlights the influence of the graph topology and give results on the storage capacity for not too irregular random graph models. The class of models investigated includes the popular power law graphs for some parameter values.

Details zur Publikation

FachzeitschriftBernoulli
Jahrgang / Bandnr. / Volume21
Ausgabe / Heftnr. / Issue3
Seitenbereich1884-1910
StatusVeröffentlicht
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3150/14-BEJ630
Link zum Volltexthttp://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84938558704&origin=inward
StichwörterAssociative memory; Hopfield model; Powerlaw graphs; Random graphs; Random matrix; Spectral theory; Statistical mechanics

Autor*innen der Universität Münster

Löwe, Matthias
Professur für Mathematische Stochastik (Prof. Löwe)