Orderability and the Weinstein conjecture

Albers P., Fuchs U., Merry W.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this article we prove that the Weinstein conjecture holds for contact manifolds (Formula presented.) for which (Formula presented.) is non-orderable in the sense of Eliashberg and Polterovich [Partially ordered groups and geometry of contact transformations, Geom. Funct. Anal. 10 (2000), 1448–1476]. More precisely, we establish a link between orderable and hypertight contact manifolds. In addition, we prove for certain contact manifolds a conjecture by Sandon [A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata 165 (2013), 95–110] on the existence of translated points in the non-degenerate case.

Details zur Publikation

FachzeitschriftCompositio Mathematica (Compos. Math.)
Jahrgang / Bandnr. / Volumenull
Ausgabe / Heftnr. / Issuenull
Statusonline first
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1112/S0010437X15007642
Link zum Volltexthttp://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84943768439&origin=inward
Stichwörterhypertight contact structures; orderability; Rabinowitz Floer homology; Weinstein conjecture

Autor*innen der Universität Münster

Albers, Peter
Professur für Theoretische Mathematik (Prof. Albers)