A Human-is-the-Loop Approach for Semi-Automated Content Moderation

Link Daniel, Hellingrath Bernd Ling Jie

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Online social media has been recognized as a valuable information source for disaster management whose volume, velocity and variety exceed manual processing capacity. Current machine learning systems that support the processing of such data generally follow a human-in-the-loop approach, which has several inherent limitations. This work applies the human-is-the-loop concept from visual analytics to semi-automate a manual content moderation workflow, wherein human moderators take the dominant role. The workflow is instantiated with a supervised machine learning system that supports moderators with suggestions regarding the relevance and categorization of content. The instantiated workflow has been evaluated using in-depth interviews with practitioners and serious games. which suggest that it offers good compatibility with work practices in humanitarian assessment as well as improved moderation quality and higher flexibility than common approaches.

Details zur Publikation

Herausgeber*innenTapia AH, Antunes P, Bañuls VA, Moore K, Albuquerque JP
BuchtitelProceedings of the 13th International Conference on Information Systems for Crisis Response and Management
StatusVeröffentlicht
Veröffentlichungsjahr2016
Sprache, in der die Publikation verfasst istEnglisch
KonferenzISCRAM 2016, Rio de Janeiro, Brazil, undefined
Link zum Volltexthttp://idl.iscram.org/files/daniellink/2016/1401_DanielLink_etal2016.pdf
StichwörterDisaster management; social media analysis; human-is-the-loop; content moderation; supervised machine learning; humanitarian logistics

Autor*innen der Universität Münster

Hellingrath, Bernd
Lehrstuhl für Wirtschaftsinformatik und Logistik (Prof. Hellingrath) (Logistik)
Link, Daniel
Lehrstuhl für Wirtschaftsinformatik und Logistik (Prof. Hellingrath) (Logistik)