MEG-EEG fusion by Kalman filtering within a source analysis framework

Hamid L., Aydin U., Wolters C., Stephani U., Siniatchkin M., Galka A.

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

The fusion of data from multiple neuroimaging modalities may improve the temporal and spatial resolution of non-invasive brain imaging. In this paper, we present a novel method for the fusion of simultaneously recorded electroencephalograms (EEG) and magnetoencephalograms (MEG) within the framework of source analysis. This method represents an extension of a previously published spatio-temporal inverse solution method to the case of MEG or combined MEG-EEG signals. Moreover, we use a state-of-the-art realistic finite element (FE) head model especially calibrated for the MEG-EEG fusion problem. Using a real data set containing an epileptic spike, we validate the source analysis results of the spatio-temporal inverse solution using the results of the LORETA method and the findings from other structural and functional modalities. We show that the proposed fusion method, despite the low signal-to-noise ratio (SNR) of single spikes, points to the same brain area that was found by the other modalities. Furthermore, it correctly identifies the same source as the main generator for the MEG and EEG spikes. © 2013 IEEE.

Details zur Publikation

Seitenbereich4819-4822
StatusVeröffentlicht
Veröffentlichungsjahr2013
Sprache, in der die Publikation verfasst istEnglisch
Konferenz35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013, Osaka, jpn, undefined
ISBN9781457702167
DOI10.1109/EMBC.2013.6610626
Link zum Volltexthttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84886580739&origin=inward

Autor*innen der Universität Münster

Aydin, Ümit
Institut für Biomagnetismus und Biosignalanalyse
Wolters, Carsten
Institut für Biomagnetismus und Biosignalanalyse