On a Boltzmann mean field model for knowledge growth

Burger M., Lorz A., Wolfram M.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this paper we analyze a Boltzmann-type mean field game model for knowledge growth, which was proposed by Lucas et al. [J. Political Econ., 122 (2014), pp. 1-51]. We discuss the underlying mathematical model, which consists of a coupled system of a Boltzmann-type equation for the agent density and a Hamilton-Jacobi-Bellman equation for the optimal strategy. We study the analytic features of each equation separately and show local in time existence and uniqueness for the fully coupled system. Furthermore we focus on the construction and existence of special solutions, which relate to exponential growth in time - so-called balanced growth path solutions. Finally, we illustrate the behavior of solutions for the full system and the balanced growth path equations with numerical simulations.

Details zur Publikation

FachzeitschriftSIAM Journal on Applied Mathematics (SIAM J. Appl. Math.)
Jahrgang / Bandnr. / Volume76
Ausgabe / Heftnr. / Issue5
Seitenbereich1799-1818
StatusVeröffentlicht
Veröffentlichungsjahr2016
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1137/15M1018599
Link zum Volltexthttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84992670197&origin=inward
StichwörterBoltzmann-type equations; Hamilton-Jacobi-Bellman equations; Mean field games

Autor*innen der Universität Münster

Burger, Martin
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Burger)