Spectral decompositions using one-homogeneous functionals

Burger M., Gilboa G., Moeller M., Eckardt L., Cremers D.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

This paper discusses the use of absolutely one-homogeneous regularization functionals in a variational, scale space, and inverse scale space setting to define a nonlinear spectral decomposition of input data. We present several theoretical results that explain the relation between the different definitions. Additionally, results on the orthogonality of the decomposition, a Parseval-type identity, and the notion of generalized (nonlinear) eigenvectors closely link our nonlinear multiscale decompositions to the well-known linear filtering theory. Numerical results are used to illustrate our findings.

Details zur Publikation

FachzeitschriftSIAM Journal on Imaging Sciences (SIAM J. Imaging Sci.)
Jahrgang / Bandnr. / Volume9
Ausgabe / Heftnr. / Issue3
Seitenbereich1374-1408
StatusVeröffentlicht
Veröffentlichungsjahr2016
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1137/15M1054687
Link zum Volltexthttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84989298933&origin=inward
StichwörterConvex regularization; Nonlinear eigenfunctions; Nonlinear spectral decomposition; Total variation

Autor*innen der Universität Münster

Burger, Martin
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Burger)