Fish School Search with Algorithmic Skeletons

Wrede Fabian, Menezes Breno, Kuchen Herbert

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Low-level parallel programming is a tedious and error-prone task, especially when combining several programming models such as OpenMP, MPI, and CUDA. Algorithmic skeletons are a well-known high-level solution to these issues. They provide recurring building blocks such as map, fold, and zip, which are used by the application programmer and executed in parallel. In the present paper, we use the skeleton library Muesli in order to solve hard optimization problems by applying swarm intelligence (SI)-based metaheuristics. We investigate, how much hardware can reasonably be employed in order to find quickly a good solution using Fish School Search (FSS), which is a rather new and innovative SI-based metaheuristic. Moreover, we compare the implementation effort and performance of low-level and high-level implementations of FSS.

Details zur Publikation

FachzeitschriftInternational Journal of Parallel Programming
Jahrgang / Bandnr. / Volume-
Ausgabe / Heftnr. / Issue-
Seitenbereich1-19
StatusVeröffentlicht
Veröffentlichungsjahr2018 (09.03.2018)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/s10766-018-0564-z
Link zum Volltexthttps://link.springer.com/article/10.1007/s10766-018-0564-z
Stichwörteralgorithmic skeletons; metaheuristics; swarm intelligence; fish shool search

Autor*innen der Universität Münster

Kuchen, Herbert
Lehrstuhl für Praktische Informatik in der Wirtschaft (Prof. Kuchen) (PI)
Menezes, Breno
Lehrstuhl für Praktische Informatik in der Wirtschaft (Prof. Kuchen) (PI)
Wrede, Fabian
Lehrstuhl für Praktische Informatik in der Wirtschaft (Prof. Kuchen) (PI)