Himpe C, Ohlberger M
Forschungsartikel (Zeitschrift) | Peer reviewedA common approach in model reduction is balanced truncation, which is based on Gramian matrices classifying certain attributes of states or parameters of a given dynamic system. Initially restricted to linear systems, the empirical Gramians not only extended this concept to nonlinear systems but also provided a uniform computational method. This work introduces a unified software framework supplying routines for six types of empirical Gramians. The Gramian types will be discussed and applied in a model reduction framework for multiple-input multiple-output systems.
| Himpe, Christian | Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger) |
| Ohlberger, Mario | Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger) |
Laufzeit: 01.11.2012 - 31.10.2019 | 1. Förderperiode Gefördert durch: DFG - Exzellenzcluster Art des Projekts: Teilprojekt in DFG-Verbund koordiniert an der Universität Münster |
| Combined State and Parameter Reduction for Nonlinear Systems with an Application in Neuroscience Promovend*in: Himpe, Christian | Betreuer*innen: Ohlberger, Mario Zeitraum: bis 20.06.2016 Promotionsverfahren erfolgt(e) an: Promotionsverfahren an der Universität Münster |