Adaptive Heterogeneous Multiscale Methods for immiscible two-phase flow in porous media

Henning P, Ohlberger M, Schweizer B

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this contribution we present the first formulation of a heterogeneous multiscale method for an incompressible immiscible two-phase flow system with degenerate permeabilities. The method is in a general formulation which includes oversampling. We do not specify the discretization of the derived macroscopic equation, but we give two examples of possible realizations, suggesting a finite element solver for the fine scale and a vertex centered finite volume method for the effective coarse scale equations. Assuming periodicity, we show that the method is equivalent to a discretization of the homogenized equation. We provide an a-posteriori estimate for the error between the homogenized solutions of the pressure and saturation equations and the corresponding HMM approximations. The error estimate is based on the results recently achieved in [C. Canc{`e}s, I. S. Pop, and M. Vohral'{i}k. An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow. Math. Comp., in press, 2013].

Details zur Publikation

FachzeitschriftComputational Geosciences
Jahrgang / Bandnr. / Volume1
Ausgabe / Heftnr. / Issue19
Seitenbereich99-114
StatusVeröffentlicht
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/s10596-014-9455-6

Autor*innen der Universität Münster

Henning, Patrick
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)