Unsaturated subsurface flow with surface water and nonlinear in- and outflow conditions

Berninger H, Ohlberger M, Sander O, Smetana K

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We analytically and numerically analyze groundwater flow in a homogeneous soil described by the Richards equation, coupled to surface water represented by a set of ordinary differential equations (ODE's) on parts of the domain boundary, and with nonlinear outflow conditions of Signorini's type. The coupling of the partial differential equation (PDE) and the ODE's is given by nonlinear Robin boundary conditions. This article provides two major new contributions regarding these infiltration conditions. First, an existence result for the continuous coupled problem is established with the help of a regularization technique. Second, we analyze and validate a solver-friendly discretization of the coupled problem based on an implicit--explicit time discretization and on finite elements in space. The discretized PDE leads to convex spatial minimization problems which can be solved efficiently by monotone multigrid. Numerical experiments are provided using the DUNE numerics framework.

Details zur Publikation

Jahrgang / Bandnr. / Volume24
Ausgabe / Heftnr. / Issue5
Seitenbereich901-936
StatusVeröffentlicht
Veröffentlichungsjahr2014
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1142/S0218202513500711
Link zum Volltexthttp://wwwmath.uni-muenster.de/num/publications/2013/BOSS13a/
Stichwörtersaturated-unsaturated porous media flow; Kirchhoff transformation; convex minimization; finite elements; monotone multigrid; nonlinear transmission; problem

Autor*innen der Universität Münster

Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Smetana, Kathrin
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)