Extending the SkelCL Skeleton Library for Stencil Computations on Multi-GPU Systems

Breuer Stefan, Steuwer Michel, Gorlatch Sergei

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

The implementation of stencil computations on modern, massively parallel systems with GPUs and other accelerators currently relies on manually-tuned coding using low-level approaches like OpenCL and CUDA, which makes it a complex, time-consuming, and error-prone task. We describe how stencil computations can be programmed in our SkelCL approach that combines high level of programming abstrac- tion with competitive performance on multi-GPU systems. SkelCL extends the OpenCL standard by three high-level features: 1) pre-implemented parallel patterns (a.k.a. skele- tons); 2) container data types for vectors and matrices; 3) automatic data (re)distribution mechanism. We introduce two new SkelCL skeletons which specifically target stencil computations – MapOverlap and Stencil – and we describe their use for particular application examples, discuss their efficient parallel implementation, and report experimental results on manycore systems with multiple GPUs.

Details zur Publikation

Herausgeber*innenGrößlinger A, Köstler H
BuchtitelProceedings of the 1st International Workshop on High-Performance Stencil Computations
Seitenbereich15-21
VerlagInternational Workshop on High-Performance Stencil Computations
ErscheinungsortWien
StatusVeröffentlicht
Veröffentlichungsjahr2014
Sprache, in der die Publikation verfasst istEnglisch
KonferenzHiStencils 2014, Wien, Österreich
Link zum Volltexthttp://www.exastencils.org/histencils/papers/histencils2014_skelcl_on_multi_gpu_systems.pdf
StichwörterStencils; Manycores; GPU; OpenCL; Skeletons; SkelCL

Autor*innen der Universität Münster

Gorlatch, Sergei
Professur für Praktische Informatik (Prof. Gorlatch)
Steuwer, Michel
Institut für Informatik