A-Posteriori Error Estimates for the Localized Reduced Basis Multi-Scale Method

Ohlberger M, Schindler F

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

We present a localized a-posteriori error estimate for the localized reduced basis multi-scale (LRBMS) method [Albrecht, Haasdonk, Kaulmann, Ohlberger (2012): The localized reduced basis multiscale method]. The LRBMS is a combination of numerical multi-scale methods and model reduction using reduced basis methods to efficiently reduce the computational complexity of parametric multi-scale problems with respect to the multi-scale parameter ε and the online parameter μ simultaneously. We formulate the LRBMS based on a generalization of the SWIPDG discretization presented in [Ern, Stephansen, Vohralik (2010): Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems] on a coarse partition of the domain that allows for any suitable discretization on the fine triangulation inside each coarse grid element. The estimator is based on the idea of a conforming reconstruction of the discrete diffusive flux, that can be computed using local information only. It is offline/online decomposable and can thus be efficiently used in the context of model reduction.

Details zur Publikation

Herausgeber*innen, Rohde C
BuchtitelFinite Volumes for Complex Applications VII-Methods and Theoretical Aspects
Seitenbereich421-429
VerlagSpringer International Publishing
Titel der ReiheSpringer Proceedings in Mathematics & Statistics
Nr. in Reihe77
StatusVeröffentlicht
Veröffentlichungsjahr2014
Sprache, in der die Publikation verfasst istEnglisch
KonferenzFinite Volumes for Complex Applications VII, Berlin, undefined
DOI10.1007/978-3-319-05684-5_41
Link zum Volltexthttps://arxiv.org/abs/1401.7173

Autor*innen der Universität Münster

Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)
Schindler, Felix Tobias
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)