gCUP: Rapid GPU-based HIV-1 Coreceptor Usage Prediction for Next-Generation Sequencing

Olejnik Michael, Steuwer Michel, Dybowski J. Nikolaj, Gorlatch Sergei, Heider Dominik

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Next-generation sequencing (NGS) has a large potential in HIV diagnostics, and genotypic prediction models have been developed and successfully tested in the recent years. However, albeit being highly accurate, these computational models lack computational efficiency to reach their full potential. In this study, we demonstrate the use of graphics processing units (GPUs) in combination with a computational prediction model for HIV tropism. Our new model named gCUP, parallelized and optimized for GPU, is highly accurate and can classify 4175 000 sequences per second on an NVIDIA GeForce GTX 460. The computational efficiency of our new model is the next step to enable NGS technologies to reach clinical significance in HIV diagnostics. Moreover, our approach is not limited to HIV tropism prediction, but can also be easily adapted to other settings, e.g. drug resistance prediction.

Details zur Publikation

FachzeitschriftBioinformatics
Jahrgang / Bandnr. / Volume30
Ausgabe / Heftnr. / Issue22
Seitenbereich3272-3273
StatusVeröffentlicht
Veröffentlichungsjahr2014 (15.11.2014)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1093/bioinformatics/btu535

Autor*innen der Universität Münster

Gorlatch, Sergei
Professur für Praktische Informatik (Prof. Gorlatch)
Steuwer, Michel
Institut für Informatik