A Method for Extracting Task-related Information from Social Media based on Structured Domain Knowledge

Link Daniel, Horita Flávio, Porto de Albuquerque Joao, Hellingrath Bernd, Ghasemivandhonaryar

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Social media platforms have come into the focus of research as sources of information about the unfolding situation in disaster contexts. Incorporating information from social media into decision-making is still difficult though. One reason may be that the prevalent approach to data analysis works bottom-up, which has several limitations. In this paper, we adopt a top-down approach by means of a novel keyword-based method for identifying potentially relevant information in social media data based on structured knowledge of activities undertaken in a domain. The application of the method to the context of humanitarian logistics using four social media datasets shows its capability to identify potentially relevant information via reference tasks and to match identified information with decision-makers’ activities. In addition, we offer a first set of domain-specific keywords to identify information related to infrastructure and resources in humanitarian logistics.

Details zur Publikation

StatusVeröffentlicht
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
Konferenz21st Americas Conference on Information Systems, Fajardo, Puerto Rico, undefined
Link zum Volltexthttp://aisel.aisnet.org/amcis2015/SocialComputing/GeneralPresentations/8/
StichwörterDisaster Management; Humanitarian Logistics; Social Media; Reference Tasks; Information Categories; Infrastructure and Resources

Autor*innen der Universität Münster

Hellingrath, Bernd
Lehrstuhl für Wirtschaftsinformatik und Logistik (Prof. Hellingrath) (Logistik)
Link, Daniel
Lehrstuhl für Wirtschaftsinformatik und Logistik (Prof. Hellingrath) (Logistik)