Truncated octahedral LiNi0.5Mn1.5O4 cathode material for ultralong-life lithium-ion battery: Positive (100) surfaces in high-voltage spinel system

Liu H, Kloepsch R, Wang J, Winter M, Li J.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

So far, it has not yet reached an agreement that (111) surfaces or (100) surfaces are more positive to electrochemical performance in the spinel system. Herein, we present the synthesis of regular truncated octahedral high-voltage spinel LiNi0.5Mn1.5O4 single crystals with preferred growth of (100) surfaces, which incredibly exhibit the best long-term cycling stability compared with the state-of-art spinel material. The capacity retention is about 90% after 2000 cycles at 1C. The extraordinary performance is mostly attributed to the highly regular truncated octahedral microstructure with large portions of stable (100) facets, which can stabilize the spinel structure to effectively suppress the side reactions with the electrolyte at high operating voltage and are also orientated to support Li+ transport kinetics. Therefore, our work further promotes the practical application of LiNi0.5Mn1.5O4 cathode material in next generation Lithium-ion batteries with high energy density and power performance.

Details zur Publikation

FachzeitschriftJournal of Power Sources
Jahrgang / Bandnr. / Volume300
StatusVeröffentlicht
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.jpowsour.2015.09.066
Link zum Volltexthttp://www.sciencedirect.com/science/article/pii/S0378775315303256
Stichwörter(100) surfaces; High-voltage spinel; Lithium ion battery; Long life; Truncated octahedron

Autor*innen der Universität Münster

Li, Jie
Institut für Physikalische Chemie
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Liu, Haidong
Institut für Physikalische Chemie
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Schmuch, Richard
Institut für Physikalische Chemie
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Wang, Jun
Institut für Physikalische Chemie
Münster Electrochemical Energy Technology Battery Research Center (MEET)
Winter, Martin
Münster Electrochemical Energy Technology Battery Research Center (MEET)