The GOBIA method: Towards goal-oriented business intelligence architectures

Fekete D., Vossen G.

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Traditional Data Warehouse (DWH) architectures are challenged by numerous novel Big Data products. These tools are typically presented as alternatives or extensions for one or more of the layers of a typical DWH reference architecture. Still, there is no established joint reference architecture for both DWH and Big Data that is inherently aligned with business goals as implied by Business Intelligence (BI) projects. In this paper, a work-in-progress approach towards such custom BI architectures, the GOBIA method, is presented to address this gap, combining a BI reference architecture and a development process.

Details zur Publikation

Herausgeber*innenBergmann R., Görg S., Müller G.
BuchtitelProceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB
Seitenbereich409-418
VerlagCEUR-WS
ErscheinungsortTrier, Germany
Titel der ReiheLearning, Knowledge, Adaptation (ISSN: 1613-0073)
Nr. in Reihe1458
StatusVeröffentlicht
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
KonferenzLearning, Knowledge, Adaptation Workshops, LWA 2015: Knowledge Discovery, Data Mining and Machine Learning, KDML 2015, Knowledge Management, FGWM 2015, Information Retrieval, IR 2015 and Database Systems, FGDB 2015, Trier, Deutschland, undefined
Link zum Volltexthttp://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84944342704&origin=inward
StichwörterBusiness Intelligence Architectures; Data Warehousing; Big Data; GOBIA

Autor*innen der Universität Münster

Fekete, David
Lehrstuhl für Wirtschaftsinformatik (Prof. Vossen) (DBIS)
Vossen, Gottfried
Lehrstuhl für Wirtschaftsinformatik (Prof. Vossen) (DBIS)