Local Shtukas, Hodge-Pink Structures and Galois Representations

Hartl Urs, Kim Wansu

Forschungsartikel (Buchbeitrag) | Peer reviewed

Zusammenfassung

We review the analog of Fontaine's theory of crystalline p-adic Galois representations and their classification by weakly admissible filtered isocrystals in the arithmetic of function fields over a finite field. There crystalline Galois representations are replaced by the Tate modules of so-called local shtukas. We prove that the Tate module functor is fully faithful. In addition to this étale realization of a local shtuka we discuss also the de Rham and the crystalline cohomology realizations and construct comparison isomorphisms between these realizations. We explain how local shtukas and these cohomology realizations arise from Drinfeld modules and Anderson'€™s t-motives. As an application we construct equi-characteristic crystalline deformation rings, establish their rigid-analytic smoothness and compute their dimension.

Details zur Publikation

Herausgeber*innenG. Böckle, D. Goss, U. Hartl, M. Papanikolas
Buchtitelt-motives: Hodge structures, transcendence and other motivic aspects
Seitenbereich183-260
VerlagEMS Press
StatusVeröffentlicht
Veröffentlichungsjahr2020
Sprache, in der die Publikation verfasst istEnglisch
ISBN978-3-03719-198-9
Link zum Volltexthttp://arxiv.org/abs/1512.05893

Autor*innen der Universität Münster

Hartl, Urs
Professur für Arithmetische Geometrie (Prof. Hartl)