Diffusion asymptotics for linear transport with low regularity

Egger H., Schlottbom M.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We provide an asymptotic analysis of linear transport problems in the diffusion limit under minimal regularity assumptions on the domain, the coefficients, and the data. The weak form of the limit equation is derived and the convergence of the solution in the L2 norm is established without artificial regularity requirements. This is important to be able to deal with problems involving realistic geometries and heterogeneous media. In a second step we prove the usual O(ε) convergence rates under very mild additional assumptions. The generalization of the results to convergence in Lp with p≠2 and some limitations are discussed.

Details zur Publikation

FachzeitschriftAsymptotic Analysis
Jahrgang / Bandnr. / Volume89
Ausgabe / Heftnr. / Issuenull
Seitenbereich365-377
StatusVeröffentlicht
Veröffentlichungsjahr2014
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3233/ASY-141235
Link zum Volltexthttp://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84907550785&origin=inward
Stichwörterasymptotic analysis; diffusion limit; neutron transport; radiative transfer

Autor*innen der Universität Münster

Schlottbom, Matthias
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Burger)