Hyperparameter optimization in the estimation of PDE and delay-PDE models from dataOpen Access

Mai, Oliver; Kroll, Tim W.; Thiele, Uwe; Kamps, Oliver

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We propose an improved method for estimating partial differential equations (PDEs) and delay PDEs from data, using Bayesian optimization and the Bayesian information criterion to automatically find suitable hyperparameters for the method itself and also for the equations (such as a time-delay). We show that combining time integration into an established model estimation method increases robustness and yields predictive models. Allowing hyperparameters to be optimized as part of the model estimation results in a wider modeling scope. We demonstrate the method’s performance for a number of synthetic benchmark problems of different complexity, representing different classes of physical behavior. This includes the Allen–Cahn and Cahn–Hilliard models, as well as different reaction-diffusion systems without and with time-delay.

Details zur Publikation

FachzeitschriftNew Journal of Physics (New J. Phys.)
Jahrgang / Bandnr. / VolumeVolume 28
StatusVeröffentlicht
Veröffentlichungsjahr2026
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1088/1367-2630/ae2e33
Link zum Volltexthttps://iopscience.iop.org/article/10.1088/1367-2630/ae2e33
Stichwörterpartial differential equations; delay equations; data-driven modeling; model estimation; parameter estimation; soft matter physics; numerical physics

Autor*innen der Universität Münster

Kamps, Oliver
Center for Nonlinear Science (CeNoS)
Kroll, Tim Wilhelm
Center for Nonlinear Science (CeNoS)
Mai, Oliver
Center for Nonlinear Science (CeNoS)
Thiele, Uwe
Professur für Theoretische Physik (Prof. Thiele)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC) (CMTC)