Transformer-Based Parameter Fitting of Models Derived from Bloch-McConnell Equations for CEST MRI AnalysisOpen Access

Duhme, Christof; Lippe, Chris; Hoerr, Verena; Jiang, Xiaoyi

Abstract in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Chemical exchange saturation transfer (CEST) MRI is a non-invasive imaging modality for detecting metabolites. It offers higher resolution and sensitivity compared to conventional magnetic resonance spectroscopy (MRS). However, quantification of CEST data is challenging because the measured signal results from a complex interplay of many physiological variables. Here, we introduce a transformer-based neural network to fit parameters such as metabolite concentrations, exchange and relaxation rates of a physical model derived from Bloch-McConnell equations to in-vitro CEST spectra. We show that our self-supervised trained neural network clearly outperforms the solution of classical gradient-based solver.

Details zur Publikation

Herausgeber*innenXu, X.; Cui, Z.; Rekik, I.; Ouyang, X.; Sun, K
BuchtitelLecture Notes in Computer Science (Band 15242)
Seitenbereich108-116
VerlagSpringer Publishing
ErscheinungsortCham
StatusVeröffentlicht
Veröffentlichungsjahr2025 (23.10.2024)
Konferenz27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Machine Learning in Medical Imaging (MLMI 2024), Marrakesh, Marokko
ISBN978-3-031-73292-8;978-3-031-73290-4
DOI10.1007/978-3-031-73290-4_11
Link zum Volltexthttps://arxiv.org/abs/2602.06574
StichwörterSelf-supervised Representation Learning; Transformer; CEST MRI Analysis; Model-based Analysis

Autor*innen der Universität Münster

Duhme, Christof
Professur für Praktische Informatik (Prof. Jiang)
Hörr, Verena
Klinik für Radiologie
Jiang, Xiaoyi
Professur für Praktische Informatik (Prof. Jiang)