Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems

Henning P, Ohlberger M

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In this work we introduce and analyse a new adaptive Petrov-Galerkin heterogeneous multiscale finite element method (HMM) for monotone elliptic operators with rapid oscillations. In a general heterogeneous setting we prove convergence of the HMM approximations to the solution of a macroscopic limit equation. The major new contribution of this work is an a-posteriori error estimate for the L2-error between the HMM approximation and the solution of the macroscopic limit equation. The a posteriori error estimate is obtained in a general heterogeneous setting with scale separation without assuming periodicity or stochastic ergodicity. The applicability of the method and the usage of the a posteriori error estimate for adaptive local mesh refinement is demonstrated in numerical experiments. The experimental results underline the applicability of the a posteriori error estimate in non-periodic homogenization settings.

Details zur Publikation

FachzeitschriftDiscrete and Continuous Dynamical Systems - Series S
Jahrgang / Bandnr. / Volume8
Ausgabe / Heftnr. / Issue1
Seitenbereich119-150
StatusVeröffentlicht
Veröffentlichungsjahr2015
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3934/dcdss.2015.8.119
StichwörterA posteriori estimate; HMM; monotone operator; multiscale methods

Autor*innen der Universität Münster

Henning, Patrick
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)