Affine Deligne-Lusztig varieties beyond the minute caseOpen Access

Schremmer, Felix; Viehmann, Eva

Forschungsartikel in Online-Sammlung | Preprint

Zusammenfassung

Affine Deligne-Lusztig varieties in the fully Hodge-Newton decomposable (or minute) case are the only larger class of ADLVs which could be described completely in the past. Instances of them play important roles in arithmetic geometry, from Harris-Taylor's proof of the local Langlands correspondence to applications in the Kudla program. We study generalizations for many of the equivalent conditions characterizing them to obtain in this way a larger class of ADLVs that still have a similarly good and computable description of their geometry. To generalize the minute condition itself, we introduce the notion of depth for a Shimura datum - the minute cases being those of depth bounded by 1, the cases we study being the ones of depth less than 2.

Details zur Publikation

Name des Repositoriumsarxiv
Artikelnummer08879
StatusVeröffentlicht
Veröffentlichungsjahr2025
Sprache, in der die Publikation verfasst istEnglisch
DOI10.48550/arXiv.2511.08879
StichwörterAlgebraic Geometry (math.AG); Representation Theory (math.RT)

Autor*innen der Universität Münster

Viehmann, Eva
Professur für Theoretische Mathematik (Prof. Viehmann)