Assessing Map Reproducibility with Visual Question-Answering: An Empirical EvaluationOpen Access

Koukouraki, Eftychia; Degbelo, Auriol; Kray, Christian

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Reproducibility is a key principle of the modern scientific method. Maps, as an important means of communicating scientific results in GIScience and across disciplines, should be reproducible. Currently, map reproducibility assessment is done manually, which makes the assessment process tedious and time-consuming, ultimately limiting its efficiency. Hence, this work explores the extent to which Visual Question-Answering (VQA) can be used to automate some tasks relevant to map reproducibility assessment. We selected five state-of-the-art vision language models (VLMs) and followed a three-step approach to evaluate their ability to discriminate between maps and other images, interpret map content, and compare two map images using VQA. Our results show that current VLMs already possess map-reading capabilities and demonstrate understanding of spatial concepts, such as cardinal directions, geographic scope, and legend interpretation. Our paper demonstrates the potential of using VQA to support reproducibility assessment and highlights the outstanding issues that need to be addressed to achieve accurate, trustworthy map descriptions, thereby reducing the time and effort required by human evaluators.

Details zur Publikation

Herausgeber*innenKatarzyna Sila-Nowicka, Antoni Moore, David O’Sullivan, Benjamin Adams, and Mark Gahegan
Buchtitel13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs)
Seitenbereich13:1-13:12
Artikelnummer13
VerlagDagstuhl Publishing
ErscheinungsortDagstuhl, Germany
StatusVeröffentlicht
Veröffentlichungsjahr2025 (15.08.2025)
Konferenz 13th International Conference on Geographic Information Science (GIScience 2025), 26-29 August 2025, Christchurch, Neuseeland
DOI10.4230/LIPIcs.GIScience.2025.13
Link zum Volltexthttps://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.13
Stichwörter map comparison; computational reproducibility; visual question answering; large language models; GeoAI

Autor*innen der Universität Münster

Koukouraki, Eftychia
Institut für Geoinformatik (ifgi)
Kray, Christian
Professur für Geoinformatik (Prof. Kray)