Activation Functions in Non-Negative Neural NetworksOpen Access

Becker M; Drees D; Brückerhoff-Plückelmann F; Schuck C; Pernice W; Risse B

Forschungsartikel in Online-Sammlung | Preprint | Peer reviewed

Zusammenfassung

Optical neural networks (ONNs) have the potential to overcome scaling limitations of transistor-based systems due to their inherent low latency and large available bandwidth. However, encoding the information directly in the physical properties of light fields also imposes new computational constraints, for example the restriction to only positive intensity values for incoherent photonic processors. In this work, we investigate the fundamental yet underexplored design and training challenges of physically constrained information processing with a particular focus on activation functions in non-negative neural networks (4Ns). Building on biological inspirations we revisit the concept of inhibitory (decreasing) and excitatory (increasing) activation functions, explore their effects experimentally and introduce a general approach for weight initialization of non-negative neural networks. Our results indicate the importance of both inhibitory and excitatory elements in activation functions in incoherent ONNs which should be considered for future design of optical activation functions for ONNs. Code is available at https://nnnn.cvmls.org.

Details zur Publikation

Name des RepositoriumsIEEE Access
StatusVeröffentlicht
Veröffentlichungsjahr2025 (16.10.2025)
DOI10.1109/ACCESS.2025.3622408
Link zum Volltexthttps://ieeexplore.ieee.org/document/11205509
StichwörterTraining;Neural networks;Optical signal processing;Optical pulses;Optical computing;Biomedical optical imaging;Optical fiber networks;Network architecture;Photonics;Deep learning;Activation Functions;Constrained Optimization;Deep Learning;Non-negative Neural Networks;Optical Neural Networks

Autor*innen der Universität Münster

Becker, Marlon Marijn
Professur für Geoinformatics for Sustainable Development (Prof. Risse)
Brückerhoff-Plückelmann, Frank
Professur für Experimentalphysik mit der Ausrichtung Physik responsiver Nanosysteme (Prof. Pernice)
Drees, Dominik
Professur für Geoinformatics for Sustainable Development (Prof. Risse)
Pernice, Wolfram
Professur für Experimentalphysik mit der Ausrichtung Physik responsiver Nanosysteme (Prof. Pernice)
Center for Soft Nanoscience (SoN) (SoN)
Münster Nanofabrication Facility, MNF (MNF)
Risse, Benjamin
Professur für Geoinformatics for Sustainable Development (Prof. Risse)
Schuck, Carsten
Center for Soft Nanoscience (SoN) (SoN)
Münster Nanofabrication Facility, MNF (MNF)
Department für Quantentechnologie
Professur für Experimentelle Physik (Prof. Schuck)