Towards population scale testis volume segmentation in DIXON MRIOpen Access

Ernsting J; Beeken PN; Ogoniak L; Kockwelp J; Roll W; Hahn T; Busch AS; Risse B

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Testis size is known to be one of the main predictors of male fertility, usually assessed in clinical workup via palpation or imaging. Despite its potential, population-level evaluation of testicular volume using imaging remains underexplored. Previous studies, limited by small and biased datasets, have demonstrated the feasibility of machine learning for testis volume segmentation. This paper presents an evaluation of segmentation methods for testicular volume using Magnetic Resonance Imaging data from the UKBiobank. The best model achieves a median dice score of 0.89, compared to median dice score of 0.85 for human interrater reliability on the same dataset, enabling large-scale annotation on a population scale for the first time. Our overall aim is to provide a trained model, comparative baseline methods, and annotated training data to enhance accessibility and reproducibility in testis MRI segmentation research.

Details zur Publikation

FachzeitschriftComputers in Biology and Medicine
Jahrgang / Bandnr. / Volume198
Seitenbereich111139-111139
StatusVeröffentlicht
Veröffentlichungsjahr2025
Sprache, in der die Publikation verfasst istEnglisch
DOIhttps://doi.org/10.1016/j.compbiomed.2025.111139
Link zum Volltexthttps://www.sciencedirect.com/science/article/pii/S0010482525014921
StichwörterSegmentation, UkBiobank, MRI, Testis, Volume estimation

Autor*innen der Universität Münster

Busch, Alexander Siegfried
Klinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie -
Ernsting, Jan
Professur für Geoinformatics for Sustainable Development (Prof. Risse)
Hahn, Tim
Institut für Translationale Psychiatrie
Kockwelp, Jacqueline
Professur für Geoinformatics for Sustainable Development (Prof. Risse)
Risse, Benjamin
Professur für Geoinformatics for Sustainable Development (Prof. Risse)