Efficient Regularization-based Normalization for Interactive Multidimensional Data Analysis Without Scaling Artifacts

Molchanov, Vladimir; Rave, Hennes; Linsen, Lars

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Attribute values in multidimensional datasets often have different measurement units, making data normalization an essential preprocessing step for visualization algorithms such as multidimensional data projections. However, existing normalization techniques are often sensitive to noise, rely on specific data models, are computationally expensive, or have other limitations. The state-of-the-art method for computing optimal scalings of multidimensional data attributes is based on Lloyd relaxation in a linearly projected space. However, its high computational complexity hinders its applicability to datasets of moderate or large sizes. We overcome this limitation by efficiently regularizing the distribution of projected samples using integral images. Our method reduces scaling-induced artifacts, leading to more reliable multidimensional data analysis. In numerical experiments, we demonstrate that our approach, generally, outperforms state-of-the-art methods in computation time, scalability, accuracy, and stability.

Details zur Publikation

FachzeitschriftJournal of WSCG
Jahrgang / Bandnr. / Volume33
Ausgabe / Heftnr. / Issue1
Seitenbereich43-52
StatusVeröffentlicht
Veröffentlichungsjahr2025
Sprache, in der die Publikation verfasst istEnglisch
DOI10.24132/JWSCG.2025-5
Link zum Volltexthttp://wscg.zcu.cz/WSCG2025/papers/B41.pdf
StichwörterMultidimensional Data Visualization; Linear Projection; Data Normalization; Attribute Scaling

Autor*innen der Universität Münster

Linsen, Lars
Professur für Praktische Informatik (Prof. Linsen)
Molchanov, Vladimir
Professur für Praktische Informatik (Prof. Linsen)
Rave, Hennes
Professur für Praktische Informatik (Prof. Linsen)