Artificial Intelligence for Retrosynthetic Planning Needs Both Data and Expert Knowledge.

Strieth-Kalthoff F; Szymkuć S; Molga K; Aspuru-Guzik A; Glorius F; Grzybowski BA

Übersichtsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Rapid advancements in artificial intelligence (AI) have enabled breakthroughs across many scientific disciplines. In organic chemistry, the challenge of planning complex multistep chemical syntheses should conceptually be well-suited for AI. Yet, the development of AI synthesis planners trained solely on reaction-example-data has stagnated and is not on par with the performance of "hybrid" algorithms combining AI with expert knowledge. This Perspective examines possible causes of these shortcomings, extending beyond the established reasoning of insufficient quantities of reaction data. Drawing attention to the intricacies and data biases that are specific to the domain of synthetic chemistry, we advocate augmenting the unique capabilities of AI with the knowledge base and the reasoning strategies of domain experts. By actively involving synthetic chemists, who are the end users of any synthesis planning software, into the development process, we envision to bridge the gap between computer algorithms and the intricate nature of chemical synthesis.

Details zur Publikation

FachzeitschriftJournal of the American Chemical Society (J. Am. Chem. Soc.)
Jahrgang / Bandnr. / Volume146
Ausgabe / Heftnr. / Issue16
Seitenbereich11005-11017
StatusVeröffentlicht
Veröffentlichungsjahr2024 (10.04.2024)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1021/jacs.4c00338
Link zum Volltexthttps://pubs.acs.org/doi/10.1021/jacs.4c00338
StichwörterArtificial Intelligence; Algorithms; Addition Reactions; Molecules, Organic Synthesis

Autor*innen der Universität Münster

Glorius, Frank
Professur für Organische Chemie (Prof. Glorius)
Strieth-Kalthoff, Felix
Professur für Organische Chemie (Prof. Glorius)