Towards Explainability of Approximate Lifted Model Construction: A Geometric PerspectiveOpen Access

Speller, Jan; Luttermann, Malte; Gehrke, Marcel; Braun, Tanya

Forschungsartikel in Online-Sammlung (Konferenz) | Peer reviewed

Zusammenfassung

Advanced colour passing (ACP) is the state-of-the-art algorithm for lifting a propositional probabilistic model to a first-order level by combining exchangeable factors, enabling the use of lifted inference algorithms to allow for tractable probabilistic inference with respect to domain sizes. More recently, an approximate version of ACP, called ε-ACP, ensures the practical applicability of ACP by accounting for inaccurate estimates of underlying distributions. ε-ACP permits underlying distributions, encoded as potential-based factorisations, to slightly deviate depending on a hyperparameter ε while maintaining a bounded approximation error. To navigate through different levels of compression versus accuracy, a hierarchical version of ε-ACP has emerged that builds a hierarchy of ε values. In a drive towards interpretability of results, this paper looks at geometric properties of ε-equivalence, a central notion employed by ε-ACP and its hierarchical version to quantify the maximum allowed deviation between potentials. Specifically, we present a unified view on the results for ε-ACP and its hierarchical version and provide a geometric interpretation of ε-equivalence in L^p, thereby making results more interpretable.

Details zur Publikation

Name des RepositoriumsCEUR-WS
Herausgeber*innenMelzer, Sylvia; Peukert, Hagen; Thiemann, Stefan; Bender, Magnus; Özçep, Özgür L.; Russwinkel, Nele; Sauerwald, Kai; Wolter, Diedrich
BuchtitelProceedings of the Joint Workshop on Humanities-Centred Artificial Intelligence and Formal & Cognitive Reasoning co-located with 48th German Conference on Artificial Intelligence
StatusVeröffentlicht
Veröffentlichungsjahr2025
Sprache, in der die Publikation verfasst istEnglisch
KonferenzJoint Workshop on Humanities-Centred Artificial Intelligence and Formal & Cognitive Reasoning, 16.09.2025, Potsdam, Deutschland
Link zum Volltexthttps://ceur-ws.org/Vol-4058/paper4.pdf
Stichwörterlifting; factor graphs; parfactor graphs; approximation; clustering

Autor*innen der Universität Münster

Braun, Tanya
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)
Speller, Jan
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)

Projekte, aus denen die Publikation entstanden ist

Laufzeit: 15.03.2024 - 31.12.2026
Gefördert durch: MKW - Förderlinie „Künstliche Intelligenz/Maschinelles Lernen“ - KI-Starter
Art des Projekts: Gefördertes Einzelprojekt

Vorträge zur Publikation

Towards Explainability of Approximate Lifted Model Construction: A Geometric Perspective
Speller, Jan (16.09.2025)
Joint Workshop on Humanities-Centred Artificial Intelligence and Formal & Cognitive Reasoning co-located with 48th…, Potsdam
Art des Vortrags: wissenschaftlicher Vortrag