Counting Agents in Partially Observable Stochastic Games

Karabulut, Nazlı Nur; Braun, Tanya

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Multi-agent decision-making under uncertainty can be modelled using partially observable stochastic games (POSGs), with numerous agents, partial observability, stochastic dynamics, and individual goals. However, POSGs are notoriously difficult to solve due to their exponential dependence on the number of agents. In this work, we present counting POSGs using the lifting technique of counting to compactly encode symmetries in a POSG, which enables using representative policies. We exploit the encoding for a counting version of the multi-agent dynamic programming operator to solve such a POSG. Doing so reduces the exponential dependence on the number of agents to a polynomial one, making the problem tractable with respect to agent numbers.

Details zur Publikation

Herausgeber*innenSauerwald, Kai; Thimm, Matthias
BuchtitelECSQARU-25 Proceedings of the 18th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
Seitenbereich207-222
VerlagSpringer Publishing
ErscheinungsortHagen
StatusVeröffentlicht
Veröffentlichungsjahr2025
Sprache, in der die Publikation verfasst istEnglisch
KonferenzECSQARU-25 18th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 23.-26.09.2025, Hagen, Deutschland
DOI10.1007/978-3-032-05134-9_15
Stichwörtermulti-agent decision making; lifting; POSG; histograms

Autor*innen der Universität Münster

Braun, Tanya
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)
Karabulut, Nazli Nur
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)

Vorträge zur Publikation

Counting Agents in Partially Observable Stochastic Games
Karabulut, Nazlı Nur; Braun, Tanya (25.09.2025)
ECSQARU-25 18th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Hagen
Art des Vortrags: wissenschaftlicher Vortrag