A priori bounds for stochastic porous media equations via regularity structures

Tempelmayr, Markus ; Weber, Hendrik

Forschungsartikel in Online-Sammlung | Preprint

Zusammenfassung

We prove a priori bounds for solutions of singular stochastic porous media equations with multiplicative noise in their natural L1-based regularity class. We consider the first singular regime, i.e. noise of space-time regularity α − 2 for α ∈ (2/3, 1), and prove modelledness of the solution in the sense of regularity structures with respect to the solution of the corresponding linear stochastic heat equation. The proof relies on the kinetic formulation of the equation and a novel renormalized energy inequality. A careful analysis allows to balance the degeneracy of the diffusion coefficient against sufficiently strong damping of the multiplicative noise for small values of the solution.

Details zur Publikation

Name des RepositoriumsarXiv
ArtikelnummerarXiv:2507.03575
StatusVeröffentlicht
Veröffentlichungsjahr2025
Sprache, in der die Publikation verfasst istEnglisch
DOIarXiv:2507.03575
Link zum Volltexthttps://arxiv.org/abs/2507.03575
Stichwörterstochastic porous medium equation; degenerate singular SPDE; regularity structures; kinetic formulation

Autor*innen der Universität Münster

Weber, Hendrik
Professur für Mathematik (Prof. Weber)