Relaxing the CFL Condition for the Wave Equation on Adaptive Meshes

Peterseim D., Schedensack M.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

The Courant–Friedrichs–Lewy (CFL) condition guarantees the stability of the popular explicit leapfrog method for the wave equation. However, it limits the choice of the time step size to be bounded by the minimal mesh size in the spatial finite element mesh. This essentially prohibits any sort of adaptive mesh refinement that would be required to reveal optimal convergence rates on domains with re-entrant corners. This paper shows how a simple subspace projection step inspired by numerical homogenisation can remove the critical time step restriction so that the CFL condition and approximation properties are balanced in an optimal way, even in the presence of spatial singularities.

Details zur Publikation

FachzeitschriftJournal of Scientific Computing (J. Sci. Comput.)
Jahrgang / Bandnr. / Volume72
Ausgabe / Heftnr. / Issue3
Seitenbereich1196-1213
StatusVeröffentlicht
Veröffentlichungsjahr2017
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/s10915-017-0394-y
Link zum Volltexthttps://arxiv.org/abs/1601.04812
StichwörterAdaptive mesh refinement; CFL condition; Finite element method; Hyperbolic equation

Autor*innen der Universität Münster

Schedensack, Mira
Juniorprofessur für Angewandte Mathematik (Prof. Schedensack)