Mixed finite element methods for linear elasticity and the Stokes equations based on the Helmholtz decomposition

Schedensack M.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

This paper introduces new mixed finite element methods (FEMs) of degree ≥1 for the equations of linear elasticity and the Stokes equations based on Helmholtz decompositions. These FEMs are robust with respect to the incompressible limit and also allow for mixed boundary conditions. Adaptive algorithms driven by efficient and reliable residual-based error estimators are introduced and proved to converge with optimal rate in the case of the Stokes equations with pure Dirichlet boundary.

Details zur Publikation

FachzeitschriftESAIM: Mathematical Modelling and Numerical Analysis
Jahrgang / Bandnr. / Volume51
Ausgabe / Heftnr. / Issue2
Seitenbereich399-425
StatusVeröffentlicht
Veröffentlichungsjahr2017
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1051/m2an/2016024
StichwörterAdaptive FEM; Helmholtz decomposition; Linear elasticity; Mixed FEM; Non-conforming FEM; Optimality; Stokes equations

Autor*innen der Universität Münster

Schedensack, Mira
Juniorprofessur für Angewandte Mathematik (Prof. Schedensack)