A new discretization for mth-Laplace equations with arbitrary polynomial degrees

Schedensack M.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

This paper introduces new mixed formulations and discretizations for mth-Laplace equations of the form (-1)mΔmu = f for arbitrary m = 1,2,3,... based on novel Helmholtztype decompositions for tensor-valued functions. The new discretizations allow for ansatz spaces of arbitrary polynomial degree and the lowest-order choice coincides with the nonconforming FEMs of Crouzeix and Raviart for m = 1 and of Morley for m = 2. Since the derivatives are directly approximated, the lowest-order discretizations consist of piecewise affine and piecewise constant functions for any m = 1,2,.... Moreover, a uniform implementation for arbitrary m is possible. Besides the a priori and a posteriori analysis, this paper proves optimal convergence rates for adaptive algorithms for the new discretizations.

Details zur Publikation

FachzeitschriftSIAM Journal on Numerical Analysis (SIAM J. Numer. Anal.)
Jahrgang / Bandnr. / Volume54
Ausgabe / Heftnr. / Issue4
Seitenbereich2138-2162
StatusVeröffentlicht
Veröffentlichungsjahr2016
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1137/15M1013651
Link zum Volltexthttps://arxiv.org/abs/1512.06513
StichwörterAdaptive FEM; Mixed FEM; Mth-Laplace equation; Nonconforming FEM; Optimality; Polyharmonic equation

Autor*innen der Universität Münster

Schedensack, Mira
Juniorprofessur für Angewandte Mathematik (Prof. Schedensack)